“Photochemical fluorination of TiO2(110) produces an atomically-thin passivating layer,” W. J. I. DeBenedetti and M. A. Hines, J. Phys. Chem. C . 126, 4899 (2022).
“A single-crystal alkali antimonide photocathode: High efficiency in the ultra-thin limit,” C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, Phys. Rev. Lett. 128, 114801 (2022)
“Method for Protecting Reactive Materials with Atomically Thin Film,” M. A. Hines and W. J. I. DeBenedetti, U. S. Patent Application 63/185,407 (2021).
“Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates,” A. Galdi, J. Balajka, W. J. I. Debenedetti, L. Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, Appl. Phys. Lett. 118, 244101 (2021).
“Selective Bond Breaking with Splat Chemistry,” M. A. Hines, Physics 14, 13 (2021).
“The Effects of Oxygen-induced Phase Segregation on the Interfacial Electronic Structure and Quantum Efficiency of Cs3Sb Photocathodes,” A. Galdi, W. J. I. DeBenedetti, J. Balajka, L. Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, J. Chem. Phys. 153, 144705 (2020).
“The Intricate Love Affairs between MoS2 and Metallic Substrates,” M. Velicky, G. E. Donnelly, W. R. Hendren, W. J. I. DeBenedetti, M. A. Hines, F. Otakar, K. S. Novoselov, H. D. Abruña, and F. Huang, Adv. Materials Interfaces, 7, 2001324 (2020).
“Calvin,” M. A. Hines (2020) [Igor Pro software, Mac or Windows].
“Big Screen II,” M. A. Hines (2020) [Mobile application software, iOS].
“Breaking π-π Interactions in Carboxylic Acid Monolayers on Rutile TiO2 (110) Leads to Unexpected Long-Range Ordering,” W. J. I. DeBenedetti and M. A. Hines, J. Phys. Chem. C 123, 8836 (2019).
“Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers,” M. Velický, G. E. Donnelly, W. R. Hendren, S. McFarland, D. Scullion, W. J. I. DeBenedetti, G. C. Correa, Y. Han, A. J. Wain, M. A. Hines, D. A. Muller, K. S. Novoselov, H. D. Abruña, R. M. Bowman, E. J. G. Santos, and F. Huang, ACS Nano, 12, 10463 (2018).
“High affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution,” J. Balajka, M. A. Hines, W. J. I. DeBenedetti, M. Schmid, U. Diebold, Science, 361, 786 (2018).
“Atomic-scale understanding of catalyst activation: Carboxylic acid solutions, but not the acid itself, increase the reactivity of anatase (001) faceted nanocatalysts,” W. J. I. DeBenedetti, E. S. Skibinski, D. Jing, A. Song, and M. A. Hines, J. Phys. Chem. C 122, 4307 (2018).
“Solution deposition of phenylphosphinic acid leads to highly ordered, covalently bound monolayers on TiO2 (110) without annealing,” E. S. Skibinski, W. J. I. DeBenedetti, and M. A. Hines, J. Phys. Chem. C 121, 14213 (2017).
“Half-flat vs. atomically flat: Alkyl monolayers on morphologically controlled Si(100) and Si(111) have very similar structure, density, and chemical stability,” W. J. I. DeBenedetti, T. L. Li, and M. A. Hines, J. Chem. Phys. 146, 052804 (2017).
“Cartesian decomposition of infrared spectra reveals the structure of solution-deposited, self-assembled benzoate and alkanoate monolayers on rutile (110),” W. J. I. DeBenedetti, E. S. Skibinski, J. A. Hinckley, S. B. Nedessa, and M. A. Hines, J. Phys. Chem. C 120, 24866-24876 (2016).
“Solution deposition of self-assembled benzoate monolayers on rutile (110): Effect of π-π interactions on monolayer structure,” E. S. Skibinski, A. Song, W. J. I. DeBenedetti, A. G. Ortoll-Bloch, and M. A. Hines, J. Phys. Chem. C 120, 15881-11589 (2016).
“Nanoscale solvation leads to spontaneous formation of a bicarbonate monolayer on rutile (110) under ambient conditions: Implications for CO2 photoreduction,” A. Song, E. S. Skibinski, W. J. I. DeBenedetti, A. G. Ortoll-Bloch, and M. A. Hines, J. Chem. Phys. C 120, 9326-9333 (2016).
“Finding needles in haystacks: Scanning tunneling microscopy reveals the complex reactivity of Si(100) surfaces,” E. S. Skibinski and M. A. Hines, Acc. Chem. Res. 48, 2159 (2015).
“Frustrated etching during H/Si(111) methoxylation produces fissured fluorinated surfaces, whereas direct fluorination preserves the atomically flat morphology,” E. S. Skibinski, W. J. I. DeBenedetti, S. M. Rupich, Y. J. Chabal, and M. A. Hines, J. Phys. Chem. C 119, 26029 (2015).
“A blackboard for the 21st century: An inexpensive light board projection system for classroom use,” E. S. Skibinski, W. J. I. DeBenedetti, A. G. Ortoll-Bloch, and M. A. Hines, J. Chem. Ed. 92, 1754 (2015).
“Molecular mechanism of etching-induced faceting on Si(100): Micromasking is not a prerequisite for pyramidal texturing,” E. S. Skibinski and M. A. Hines, J. Phys. Chem. C 119, 14490 (2015)
“Rutile surface reactivity provides insight into the structure-directing role of peroxide in TiO2 polymorph control,” Anqi Song, Dapeng Jing, and Melissa A. Hines, J. Phys. Chem. C 118, 27343 (2014).
“Lowering the density of electronic defects on organic-functionalized Si(100) surfaces,” W. Peng, W. J. I. DeBenedetti, S. Kim, M. A. Hines, and Y. J. Chabal, Appl. Phys. Lett. 104, 241601 (2014).
“Chemical control of surfaces: From fundamental understanding to practical application,” M. A. Hines, Solid State Phenom. 195, 65-70 (2013).
“Si(100) etching in aqueous fluoride solutions: Parallel etching reactions lead to pH-dependent hillock formation or atomically flat surfaces,” B. S. Aldinger and M. A. Hines, J. Phys. Chem. C 116, 21499-21507 (2012).
“Self-propagating surface reaction produces near-ideal Si(100) surfaces,” M. A. Hines, M. F. Faggin, K. Bao, A. Gupta, and B. S. Aldinger, J. Phys. Chem. C 116, 18920-18929 (2012).
“High confidence level calibration for AFM based fracture testing of nanobeams,” S. Grutzik, R. Gates, Y. Gerbig, R. Cook, M. A. Hines, and A. T. Zehnder, Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics Series, Dynamic Behavior of Materials, Vol. 1, (2012).
“Following chemical charge trapping in pentacene thin films by selective impurity doping and wavelength-resolved electric force microscopy,” L. M. Brown, V. A. Pozdin, J. L. Luria, M. A. Hines, C. A. Lewis, and J. A. Marohn, Adv. Funct. Mater. 22, 5096-5106 (2012).
“Effect of surface chemistry on the quality factors of micromechanical resonators,” J. A. Henry, Y. Wang, and M. A. Hines, Proceedings of SPIE (Micro- and Nanotechnology Sensors, Systems, and Applications III) 8031, 80311A (2011).
“Kinetic Monte Carlo simulations of anisotropic Si(100) etching: Modeling the chemical origins of characteristic etch morphologies,” A. Gupta, B. S. Aldinger, M. F. Faggin, and M. A. Hines, J. Chem. Phys. 133, 044710 (2010).
“The same etchant produces near-atomically flat and microfaceted Si(100) surfaces: The effects of gas evolution on etch morphology,” B. S. Aldinger, A. Gupta, I. T. Clark, and M. A. Hines, J. Appl. Phys. 107, 103520 (2010).
“Study of the resonant frequencies of silicon microcantilevers coated with vanadium dioxide films during the insulator-to-metal transition,” A. Rúa, F. E. Fernández, M. A. Hines, N. Sepúlveda, J. Appl. Phys. 107, 053528 (2010).
“Aqueous etching produces Si(100) surfaces of near-atomic flatness: Strain minimization does not predict morphology,” I. T. Clark, B. S. Aldinger, A. Gupta, and M. A. Hines, J. Phys. Chem. C 114, 423 (2009).
“Extracting maximum information from polarized surface vibrational spectra: Application to etched, H-terminated Si(110) surfaces,” I. T. Clark, B. S. Aldinger, A. Gupta, and M. A. Hines, J. Chem. Phys. 128, 144711 (2008).
“The effect of surface chemistry on mechanical energy dissipation: Silicon oxidation does not inherently decrease quality factor,” A. Richter, D. Sengupta, M. A. Hines, J. Phys. Chem. C 112, 1473-1478 (2008).
“Understanding the effects of surface chemistry on Q: Mechanical energy dissipation in alkyl-terminated (C1–C18) micromechanical silicon resonators,” J. A. Henry, Y. Wang, D. Sengupta, and M. A. Hines, J. Phys. Chem. B 111, 88-94 (2007).
“Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 89, 231905 (2006).
“Effect of surface morphology on the fracture strength of silicon nanobeams,” T. Alan, M. A. Hines, and A. T. Zehnder, Appl. Phys. Lett. 89, 091901 (2006).
“Production of Highly Homogeneous Si(100) Surfaces by H2O Etching: Surface Morphology and the Role of Strain,” M. F. Faggin, S. K. Green, I. T. Clark, K. T. Queeney, and M. A. Hines, J. Am. Chem. Soc. 128, 11455 (2006).
"Nanomechanical Resonant Devices: Surface Chemistry, Challenges and Opportunities," in Dekker Encylopedia of Nanoscience and Nanotechnology, J. A. Henry, D. Sengupta, M. A. Hines, (Dekker, 2005).
“Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators,” Y. Wang, J. A. Henry, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 85, 5736-8 (2004).
“Etchant anisotropy controls the step bunching instability in KOH etching of silicon,” S. P. Garcia, H. Bao, and M. A. Hines, Phys. Rev. Lett. 93, 166102 (2004).
“An improved algorithm for the suppression of interference fringe in absorption spectroscopy,” M. F. Faggin and M. A. Hines, Rev. Sci. Instrum. 75, 4547-53 (2004).
“The effects of diffusional processes on crystal etching: Kinematic theory extended to two dimensions,” S. P. Garcia, H. Bao, and M. A. Hines, J. Phys. Chem. B 108, 6062–71 (2004).
“Controlling energy dissipation and stability of micromechanical silicon resonators with self-assembled monolayers,” J. A. Henry, Y. Wang, and M. A. Hines, Appl. Phys. Lett. 84, 1765 (2004).
“Machining with chemistry: Controlling nanoscale surface structure with anisotropic etching,” M. A. Hines in Nanoscale Structure and Assembly at Solid-Fluid Interfaces, Vol. I, edited by X. Y. Liu and J. J. De Yoreo (Plenum/Kluwer Academic, 2004), pp.249-81.
“In search of perfection: Understanding the highly defect selective chemistry of anisotropic etching,,” M. A. Hines, Ann. Rev. of Phys. Chem. 54, 29 (2003).
“Surface chemical control of mechanical energy dissipation in micromachined silicon devices,” Y. Wang, J. A. Henry, A. T. Zehnder, and M. A. Hines, J. Phys. Chem. B 107, 14270-77 (2003).
“Understanding the pH dependence of silicon etching: The importance of dissolved oxygen in buffered HF etchants,” S. P. Garcia, H. Bao, and M. A. Hines, Surf. Sci. 541, 252 (2003).
“Measuring the site-specific reactivity of impurities: The pronounced effect of dissolved oxygen on silicon etching,” S. P. Garcia, H. Bao, M. Manimaran, and M. A. Hines, J. Phys. Chem B 106, 8258 (2002).
“Orientation-resolved chemical kinetics: Using microfabrication to unravel the complicated chemistry of KOH/Si etching,” R. A. Wind, H. Jones, M. J. Little, and M. A. Hines, J. Phys. Chem. B 106, 1557 (2002).
“The picture tells the story: Using surface morphology to probe chemical etching reactions,” M. A. Hines, Intl. Rev. of Phys. Chem. 20, 645 (2001).
“Understanding the morphology of etched surfaces on an atomic scale,” M. A. Hines, Sensors and Materials 13, 247 (2001).
“Fabrication of nanoperiodic surface structures by controlled etching of dislocations in bicrystals,” R. A. Wind, M. J. Murtagh, F. Mei, Y. Wang, M. A. Hines, and S. L. Sass, Appl. Phys. Lett. 78, 2205 (2001).
“Morphological Aspects of Silicon Oxidation in Aqueous Solutions,” M. A. Hines in Fundamental Aspects of Silicon Oxidation, edited by Y. J. Chabal (Springer, 2001), p. 13.
“Macroscopic etch anisotropies and microscopic reaction mechanisms: A micromachined structure for the rapid assay of etchant anisotropy,” R. A. Wind and M. A. Hines, Surf. Sci. 460, 21 (2000).
“The site-specific reactivity of isopropanol in aqueous silicon etching: Controlling morphology with surface chemistry,” T. A. Newton, Y.-C. Huang, L. A. Lepak and M. A. Hines, J. Chem. Phys. 111, 9125 (1999).
“An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces,” J. Flidr, Y.-C. Huang, and M. A. Hines, J. Chem. Phys. 111, 6970 (1999).
“The correlation between surface morphology and spectral lineshape: A reexamination of the H–Si(111) stretch vibration,” T. A. Newton, J. A. Boiani and M. A. Hines, Surf. Sci. 430, 67 (1999).
“The formation of etch hillocks during step-flow etching of Si(111),” J. Flidr, Y.-C. Huang, T. A. Newton and M. A. Hines, Chem. Phys. Lett. 302, 85 (1999).
“Dynamic repulsion of surface steps during step flow etching: Controlling surface roughness with chemistry,” Y.-C. Huang, J. Flidr, T. A. Newton and M. A. Hines, J. Chem. Phys. 109, 5025 (1998).
“Effects of dynamic step-step repulsion and autocatalysis on the morphology of etched Si(111) surfaces,” Y.-C. Huang, J. Flidr, T. A. Newton and M. A. Hines, Phys. Rev. Lett. 80, 4462 (1998).
“Extracting site-specific reaction rates from steady state surface morphologies: Kinetic Monte Carlo simulations of aqueous Si(111) etching,” J. Flidr, Y.-C. Huang, T. A. Newton and M. A. Hines, J. Chem. Phys. 108, 5542 (1998).